Ученые из Массачусетского технологического института (США) предложили искать следы исчезнувшей атмосферы в глинистых минералах марсианской коры. Как следует из статьи, опубликованной в журнале Science Advances, вода с поверхности проникала сквозь горные породы и запускала в них цепь химических реакций, вытягивающих углекислый газ из атмосферы и превращающих его в метан. А это органическое соединение может долго храниться в глинистых минерах.
Похожие процессы идут в некоторых регионах на Земле. Ученые проверили, возможно ли такое в марсианских условиях. Они определили, сколько глины находится на планете. Оказалось, ее объема достаточно, чтобы преобразовать и удерживать до 1,7 бара диоксида углерода. Это примерно 80 процентов изначальной атмосферы планеты. Не исключено, что человечество научится добывать этот газ, чтобы делать из него топливо для будущих космических миссий.
«Используя геологические данные, мы показали что на Марсе, вероятно, шли схожие процессы. Определенное количество атмосферного CO2 могло пойти на синтез метана и оказаться в глинах. Этот метан, возможно, до сих пор там. Это будущий источник энергии на планете», — пояснил один из авторов статьи, профессор геологии Оливер Ягутц.
Ягутц вместе с коллегой Джошуа Мюрреем изучали глинистый минерал смектит, который благодаря своему слоистому строению служит прекрасной ловушкой для углерода. Спрятанный в складках одной частицы смектита газ может удерживаться в течение миллиардов лет.
Ученые показали, что на Земле минерал образуется в результате тектонической активности. Оказавшись на поверхности, он начинает вытягивать CO2 из атмосферы и удерживать его, что приводит к похолоданиям на протяжении миллионов лет.
Следующим шагом исследователей стало изучение карты поверхности Марса: они увидели, что она покрыта смектитовыми глинами. Тогда и пришла в голову идея, что он мог служить хранилищем углерода, как на Земле.
На Марсе не обнаружено следов плитной тектоники — по крайней мере, современной. Откуда же там взяться смектиту? Согласно дистанционным наблюдениям, некоторые области марсианской коры содержат ультраосновные магматические породы. На Земле их выветривание приводит к образованию смектитов. То же самое могло происходить на Красной планете в эпоху, когда по ней текли реки с разветвленными притоками.
Чтобы это доказать, ученые смоделировали реакции ультраосновных изверженных пород с водой, как это происходит на Земле. Затем в эту модель заложили данные о марсианских магматических породах, богатых минералом оливином.
«Мы рассматривали период, когда на Марсе CO2 присутствовал повсюду, в том числе в воде, просачивавшейся через породы», — уточнил Мюррей.
В течение миллиардов лет вода медленно реагировала с оливином, содержащим восстановленное железо. Содержащийся в воде кислород связывал его, получалось окисленное железо, которое и придало планете красный цвет. Освобожденный водород соединялся с углекислым газом в воде, в результате чего образовывался метан (CH4). Со временем оливин замещался серпентином, а тот, в свою очередь, превращался в смектит.
По оценкам, поверхность Марса покрыта слоем смектитовых глин мощностью 1100 метров. Этого достаточно, чтобы удерживать объем метана, эквивалентный большей части углекислого газа из исчезнувшей атмосферы.